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The optical properties of metal nanoparticles are significantly influenced by their morphol-
ogy, and varying of their shape leads to the appearance of a number of interesting proper-
ties. The presence of sharp edges and vertices in nanoparticles with non-spherical shapes, 
such as polyhedral, pentagonal and, in particular, icosahedral, leads to enhanced electric-
field confinement. Enhanced optical and electrical properties of nanoparticles and semi-
conductor films with embedded nanoparticles make them promising for various applica-
tions, including photovoltaics, optoelectronics, and light-emitting devices. Since the prop-
erties of nanoparticle-based nanocomposites are determined not only by the morphology 
of nanoparticles, but also by their distribution in the film volume, it is necessary to develop 
methods for producing nanoparticles with the possibility of controlling and varying their 
morphology, as well as their introduction into semiconductor films to obtain uniform ar-
rays. This article gives a review of relevant studies, the main focus is on chemical synthe-
sis, as one of the most common methods for producing metal nanoparticles. 
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1. INTRODUCTION 

The incorporation of metal nanoparticles (NPs) into semi-
conductor films can significantly affect and enhance their 
optical, electrical, and optoelectronic properties. Embed-
ding metal NPs into semiconductor films aims to leverage 
the unique properties of NPs, such as localized surface 
plasmon resonance (LSPR), quantum confinement effects, 
and enhanced light scattering. Besides that, for example, 
LSPR of metal NPs can significantly enhance the optical 
absorption cross-section of semiconductor films without 
increasing their physical thickness. 

This approach has been explored for various applica-
tions, including photovoltaics, optoelectronics, and light-
emitting devices [1–3]. The enhanced optical and electrical 
properties of nanoparticle-based semiconductor films make 
them suitable for applications where high sensitivity and ef-
ficiency are required [2–4]. For instance, it was shown that 

metal NPs such as Au, Ag and Al can enhance light absorp-
tion and scattering in semiconductor films [2,3,5,6]. The in-
corporation of Au, Ag and Cu NPs into TiO2 thin films has 
been shown to increase their absorption efficiency, particu-
larly in the visible and near-infrared regions, which is prom-
ising for solar cells applications [5,7,8]. It has also been ob-
served that the addition of NPs in thin films decreases the 
optical bandgap, refractive index and extinction coefficient 
of films [9], QD-based polymer nanocomposites exhibit 
size-dependent luminescence properties [10], embedded Sn 
NPs in Si thin films demonstrates the near-field enhance-
ment effect, which can improve optoelectronic performance 
of films [1]. 

The optical properties of metal NPs, such as their 
absorption, scattering and extinction spectra, are signifi-
cantly influenced by their morphology. Spherical NPs are 
the simplest and most widely studied NPs shape. For 
spherical NPs, the LSPR is characterized by a single reso-
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nance peak in the extinction spectrum due to their sym-
metry, the position and intensity of this peak depend on 
the NPs size and the dielectric properties of the surround-
ing medium [11–13].  

But despite their simplicity, compared to anisotropic 
shapes spherical NPs are less efficient in applications re-
quiring strong electric-field enhancement, for instance, for 
surface-enhanced Raman spectroscopy [14,15]. Elongated 
NPs, such as ellipsoidal, rodlike, triangular and disc 
plates, exhibit more complex optical properties compared 
to spherical NPs. The anisotropic shape leads to the ap-
pearance of multiple plasmon modes, which are red-
shifted compared to spherical NPs [16–20]. Elongated 
NPs shapes demonstrate a variable LSPR peak position, 
which can be shifted based on changing the NPs aspect 
ratio (ratio of the longest to the shortest dimension) and 
depending on the purpose [12]. For example, triangular 
Au NPs with higher aspect ratio exhibit stronger extinc-
tion efficiencies [21]. 

The presence of sharp edges in NPs lead to enhanced 
electric-field confinement, so cubic NPs and NPs with more 
complex shapes, such different polyhedrons, can provide 
unique optical responses [14,22]. More complex NPs 
shapes lead to multiple LSPR peaks due to varying edge 
lengths and vertex angles, but a higher symmetry of NPs 
results, on the contrary, in a decrease in the number of 
peaks. Thus, cubic NPs exhibit multiple surface plasmon 
resonances, as the truncation increases, a number of faces 
and vertices also grows, the main resonance is blue-shifted, 
and the number of secondary resonances decreases [23,24]. 
The high number of faces in icosahedral NPs leads to a re-
duction in the number of LSPR modes compared to less 
symmetric shapes, since the increased symmetry averages 
the contribution from individual faces [23]. The high sym-
metry and the presence of sharp vertices of icosahedral NPs 
also results in a blue shift and more sharpness in the absorp-
tion maxima and increased local field enhancements com-
pared to other shapes [25–27]. In general, pentagonal NPs 
exhibit distinct LSPR resonances due to their five-fold 
symmetry [28]. These shapes are less studied but have the 
potential for applications requiring specific resonance 
wavelengths. 

Therefore, it is important to understand how different 
shapes, such as spherical, ellipsoidal, flakes and fibers, af-
fect the optical properties of metal NPs, as well as to learn 
how to obtain different NPs morphology and also control 
the shape of NPs during their producing depending on 
technological tasks. 

Chemical synthesis is the main method for obtaining 
metal NPs up to hundreds of nanometers in size with vari-
ous shapes (spherical, ellipsoidal, in the form of flakes, fi-
bers, etc.) [29,30]. Using the chemical synthesis method, it 
is possible, among other things, to obtain NPs with complex 

morphology and axes of symmetry prohibited by the laws 
of classical crystallography, such as pentagonal and, in par-
ticular, icosahedral particles [31–33]. Chemical synthesis is 
not only one of the most common methods for producing 
metal NPs, but it also makes it possible to create uniform, 
ordered arrays of NPs in semiconductor films. But it is a 
complex process that involves simultaneous precise control 
over NPs shape and size, as well as their distribution and 
incorporation into the film volume. That is why the devel-
opment of methods for producing NPs with the possibility 
of controlling and varying their morphology, as well as their 
introduction into semiconductor films or direct synthesis in 
their volume to obtain uniform two-dimensional arrays is an 
important area of research in the field of materials science 
and nanotechnology. 

Studies of NPs devoted to variation of their morphol-
ogy and introduction into semiconductor films were not 
considered well. In this article the set of relevant studies 
were identified and categorized based on the NPs synthe-
sis method (Table 1) and method of nanocomposite films 
producing (Table 2). 

2. PRODUCING NANOPARTICLES WITH 
VARIOUS MORPHOLOGIES 

A review of experimental studies has shown that chemical 
synthesis methods allow to obtain NPs with different mor-
phologies, and often this requires only varying synthesis 
parameters. It was shown that NPs size and shape depend 
on various factors, such as solution concentration and sol-
vent type, evaporation rate and drying process. Key fac-
tors also include the choice of reducing/stabilizing agents, 
reaction kinetics, and environmental conditions, which 
collectively influence nucleation, growth speed, and final 
particle characteristics. For example, the NPs shape can 
change depending on the growth parameters, such as mo-
lecular structure of polyols, from wire to versatile rod, 
cube, and sphere [34].  

Silver and gold, in particular, have been intensively 
studied owing to their numerous applications that include 
catalysis, surface-enhanced Raman scattering (SERS), as 
well as chemical and biological sensing [35]. Ag NPs dis-
play several interesting properties that could be improved 
through their morphology control [36]. Shape control of 
metal NPs has received considerable attention in recent 
years because of the strong correlation between the shape 
and the chemical, physical, electronic, optical, magnetic, 
and catalytic properties of NPs [35]. For example, investi-
gation of effects of crystal shape on the catalytic perfor-
mance of Ag NPs for hydrogen generation from formalde-
hyde solution shown that silver nanocubes were more 
active than nanorods, nanowires, and nanospheres [34]. 
Au icosahedral particles demonstrated better efficiency 
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for surface-enhanced Raman spectroscopy compared to 
spherical particles with similar sizes [37]. 

Some common techniques of synthesis NPs include 
chemical reduction, photochemical synthesis, electroche-
mical synthesis, solvothermal and polyol processes. 
Among various methods, the solution-phase synthesis 
seems a promising route in the preparation of metal 
nanostructures because of its characteristics of low cost, 
high yield, and simplicity. In the general synthesis of NPs, 
the reduction of inorganic salts and their subsequent 
capping is the common procedure. The size, shape, and 

composition of the metal NPs can be well controlled by 
adjusting the reaction parameters such as temperature, 
precursor type, and order of addition of reactants. 
Additionally, metal salts and acids such as FeCl3, NaNO3 
or HCl can be added to obtain new shapes.  

Among these methods, chemical reduction is one of 
the most widely used methods for synthesizing NPs. The 
NPs morphology can be controlled by adjusting the con-
centrations of the precursor, reducing agent, and capping 
agent, as well as the reaction conditions [38]. Method of 
photochemical synthesis involves the reduction of metal 

Table 1. Comparison of methods for Ag NPs producing. 

NPs shape Synthesis method Morphology control method Ref. 

sphere 

 

chemical reduction 
the choice of reducing agent and reaction conditions (tem-
perature, pH, concentration) 

[58,59] 

sol-gel annealing temperature [43,44] 

modified polyol synthesis 

reflux and microwave irradiation, temperature [60–63] 

varying the molecular structure of polyols [34,64,65] 
cube 

 
truncated cube 

 

light radiation [66] 

polyol synthesis with seed 
catalysis 

changing the concentration of Na2S in the solution [45,67] 

polyol synthesis 
etching of twinned particles and seeds, leaving only the 
single-crystal particles 

[35,68,69,70] 

plate: 
triangular 

 
disc 

 

modified polyol synthesis reflux and microwave irradiation, temperature [61,71] 

polyol synthesis with seed 
catalysis 

varying the concentration of ascorbic 
acid 

[72] 

regulating reaction conditions [73–76] 

type of DNA: poly C and G - triangular plate, poly T - 
disc plate 

[77,78] 

wire, rod 
 

polyol synthesis with seed 
catalysis 

changing the concentration of Na2S in the solution [67,79,80] 

modified polyol synthesis 
varying the molecular structure and concentration of poly-
ols (1,2 PG, 1,3 PG) 

[34,81,82] 

polyhedral: 
tetrahedral 

 
octahedral 

 
pentagonal, in particular, 

icosahedral 

 

green synthesis with mi-
crowave heating 

microwave irradiation time, silver precursor and capping 
agent concentration 

[83] 

polyol synthesis facet-selective capping agents [84] 

hydrothermal method molar ratio between PVP and AgNO3 [85] 

chemical reduction  double reductant method [86] 

chemical reduction 
photochemical selection [87,88] 

stepwise growth of tetrahedral units [89] 

polyol synthesis with seed 
catalysis 

thermal regrowth of decahedral NPs [90] 

surface blocking with sodium polyacrylate [91] 

hydrothermal method amount of ammonia [92] 
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ions under UV light. The size and shape of NPs can be 
controlled by varying the intensity of UV light and the 
concentration of stabilizing agents [39]. Electrochemical 
synthesis allows for precise control over the morphology 
of NPs by adjusting the applied potential and current den-
sity. For example, electrodeposition from an aqueous so-
lution of metal precursor can produce dendrites or spheri-
cal NPs depending on the concentration of solution [40]. 
Methods of solvothermal and polyol processes involve the 
reduction of metal salts in a solvent at elevated tempera-
tures. The morphology of NPs can be controlled by adjust-
ing the reaction time, temperature, and the presence of nu-
cleants or growth inhibitors [41,42]. The variation of the 
molecular structure of polyols can be an additional pow-
erful way to control the shape of metal NPs. For example, 
Ag NPs of different shapes, from nanosphere to nanowire, 
versatile rod, and nanocube have been obtained quantita-
tively with different types of polyol [34,36]. 

As a precursor in the chemical synthesis of Ag NPs 
silver nitrate (AgNO3) is widely used due to its versatility, 
stability, and cost-effectiveness. AgNO3 dissolves easily 
in water and other solvents, making it suitable for various 
synthesis methods, including sol-gel [43,44], photochem-
ical reduction, microwave-assisted synthesis, and electro-
chemical methods [45,46]. In eco-friendly approaches, 
plant extracts (e.g., Moringa oleifera) act as both reducing 
and stabilizing agents during Ag NPs formation from sil-
ver nitrate [47]. 

In most methods, silver nitrate serves as the source of 
silver ions, which are reduced to elemental silver by a re-
ducing agent [45,46,48]. Silver nitrate is reduced by 
agents such as sodium borohydride (NaBH4), trisodium 
citrate (TSC), or ethylene glycol, resulting in metal silver 
NPs [49], another study used silver nitrate with ascorbic 
acid and glutathione to form colloidal silver NPs [50]. 
Strong reductants like NaBH4 produce small, monodis-
perse NPs but limit size control [51]. Weaker agents like 
TSC enable slower reduction rates, allowing better control 
over shape and size distribution, which leads to shape-spe-
cific crystallization and NPs anisotropic shapes [52–55]. 

The use of ascorbic acid as a weak reducing agent has 
been shown to slow down the growth regime, leading to 
the formation of specific morphologies such as icosahe-
dral particles [56]. 

Stabilizing agents play a crucial role in controlling 
the morphology of Ag NPs by stabilizing specific crystal 
facets and directing the growth of NPs. Stabilizing agents 
like polyvinylpyrrolidone (PVP), aminopropyltriethox-
ysilane (APS) and dodecanethiol are often added to con-
trol particle size and prevent aggregation [46], they also 
direct morphology to grow in specific crystal facets. For 
example, PVP yields spherical or prismatic Ag NPs 
[39,54,57], β-cyclodextrin has been used to synthesize 
NPs with multiply twinned icosahedral morphology [56]. 

Reaction conditions, such as temperature, pH, reaction 
time, concentration, and the presence of external salts, also 
affect the parameters of the resulting NPs. Higher reaction 
temperature accelerates reduction and NPs growth, favor-
ing larger NPs [41,52,54]. Solution pH level affects reduc-
tion kinetics and stabilizing agent effectiveness, alkaline 
conditions often enhance Ag⁺ reduction [45,54]. High pH 
values promote faster reduction rates, leading to the for-
mation of rod-like and spherical NPs, while low pH values 
result in triangular or polyhedral NPs due to slower reduc-
tion rates [55]. Alkaline conditions can lead to the for-
mation of larger NPs or aggregates, while acidic condi-
tions may result in smaller, more dispersed particles 
[93,94]. The ratio of silver salt to reducing agent deter-
mines atom availability, affecting nucleation speed and 
particle growth. Higher silver salt concentrations initially 
increase NPs yield but may lead to heterogeneity over time 
[45,48]. At high concentrations of silver nitrate, excess 
precursor ions promote rapid nucleation, leading to 
smaller NPs, while controlled growth phases enable shape 
tuning [45,48,95]. A higher ratio of reducing agent to pre-
cursor can lead to faster reduction rates and the formation 
of smaller NPs [51].  

By optimizing these parameters, researchers achieve 
tailored Ag NPs morphologies for different applications 
[52,96]. To produce Ag NPs with a complex morphology, 
specialized chemical methods are used that control nucle-
ation, growth, and shape selectivity. For instance, icosahe-
dral and, in particular, pentagonal Ag NPs are synthesized 
through specialized approaches leverage photochemistry, 
seed-mediated regrowth, and oxidative etching 
[86,87,90,91]. Such methods let to achieve high shape 
yields (>90%) and produce NPs with sizes ranging from 
50 to 200 nm.  

A wealth of chemical methods has been developed for 
the synthesis of silver and gold nanostructures that have 
well-controlled shapes, including triangular plates, cubes, 
wires, rods and others (Table 1). These techniques allow 
for precise control over NPs size, shape, and material, 

Table 2. Comparison of methods for producing nanoparticle-
embedded semiconductor films. 

Method NPs material Ref. 

RF sputtering Au, Ag, Cu [3,5,6] 

Sol-gel Ag [43,44] 

Chemical deposition SiO2, ZnS [104] 

Deposited from colloidal  
solution 

CdS, CdSe [4,105] 

Sintering of colloids CuInS2, CuInGaSe [97,98] 

Flux sublimation technique TiO2, ZnO [106,107] 
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which are critical for achieving desired optical and electri-
cal properties. Most of these methods, however, still re-
quire improvement in terms of yield, purity, and monodis-
persity of synthesis before they will find use in 
commercial applications [35]. 

3. METHODS FOR OBTAINING A UNIFORM 
ARRAY OF NANOPARTICLES ON A SURFACE 
OR WITHIN A SEMICONDUCTOR FILM 

The study of methods for obtaining a uniform array of NPs 
on a surface or within a semiconductor film has shown two 
common approaches - embedding previously produced NPs 
into semiconductor films or synthesizing NPs directly 
within the volume of these films. One of the key challenges 
in the use of nanoparticle-embedded semiconductor films is 
material compatibility. The NPs must be compatible with 
the semiconductor material in terms of their chemical and 
physical properties to ensure optimal performance [1,2]. 
Another challenge is the scalability and uniformity of nano-
particle-embedded semiconductor films. The synthesis and 
integration of NPs into semiconductor films must be scala-
ble and uniform to achieve consistent performance across 
large areas [97,98]. 

An example of the first approach is the method of adsorp-
tion of pre-synthesized CdSe NPs onto silicon wafers using 
various adsorption promoters like APTES, PEI, or PDDA 
[99]. It was shown that NPs array shape also depends on var-
ious factors, such as solution concentration and solvent type, 
evaporation rate and drying process (Table 2). For example, 
the NPs array morphology can undergo multiple transitions 
during the drying process, changing from hexagonal to cubic, 
tetragonal, and back to cubic symmetry [100]. 

The method of sintering of colloidal NPs involves the 
deposition of NPs on substrates, followed by thermal treat-
ment to remove organic ligands and sinter the NPs to form 
thin films, such as CuInS2 and CuInxGa1–xSe2 [97,98]. 

Chemical reduction method is one of the most widely 
used techniques for synthesizing metal NPs. This method 
uses metal salts (nitrates or chlorides) as metal precursors, 
chemicals like sodium borohydride or alcohols as reduc-
ing agents that reduce metal ions to neutral atoms, and sta-
bilizer agents like surfactants or polymers to prevent ag-
gregation and control size. By optimizing solutions 
composition and concentration uniform NPs can be 
achieved, which can then be deposited onto semiconduc-
tor films to create ordered arrays [101,102].  

Green synthesis method uses biological agents such as 
microorganisms or plant extracts to produce NPs, so this 
method is the eco-friendliest and avoids toxic chemicals. 
Although this method is less common for use in semicon-
ductor manufacturing, it has the potential for sustainable 
synthesis of NPs [102,103]. 

In addition to embedding pre-synthesized NPs, the 
possibility of in situ synthesis of NPs directly within sem-
iconductor films has also been studied. This approach of-
fers the advantage of better integration and uniform distri-
bution of NPs within the film volume. 

Some studies have focused on synthesizing NPs di-
rectly within the film volume, such as the formation of 
PbSeCd chalcogenide NPs in thin films [9]. 

Sputtering technology is a physical deposition method 
adapted from semiconductor manufacturing that uses 
plasma to break down bulk metals into NPs. These NPs 
are then deposited onto a substrate, forming a thin film. 
This method avoids the use of harmful chemicals and of-
fers excellent control over NPs distribution, making it en-
vironmentally friendly and scalable [108]. 

Chemical bath deposition (CBD) has been used to syn-
thesize NPs directly within semiconductor films. For ex-
ample, CdS NPs have been incorporated into CdS thin 
films using CBD, followed by thermal annealing to im-
prove their optoelectronic properties [4]. 

Hydrothermal synthesis method allows for precise 
control over NPs size and morphology and their uniform 
integration into semiconductor films. In this method NPs 
are grown directly on substrates by heterogeneous reaction 
under conditions of high temperature and high pressure in 
an autoclave [109,110]. 

Light-assisted synthesis (print-light-synthesis) is the 
most innovative approach, which combines the synthesis 
and patterning of metal NPs in a single step – first, metal 
precursor solutions are deposited on substrates, then high-
intensity light irradiation converts the precursors into NPs 
directly on the substrate or film surface. This eliminates 
the requirement for stabilizing agents and allows for spa-
tial resolution deposition, enabling the creation of ordered 
arrays [111]. 

Intercalation and Reduction is another innovative ap-
proach involving the intercalation of metal ions into lay-
ered semiconductor films, followed by reduction to form 
NPs. For example, copper ions have been intercalated into 
titania nanosheet films and reduced to form copper NPs 
within the interlayer space [106]. 

Sonoelectrodeposition combines ultrasound waves with 
electrodeposition to synthesize metal NPs. Ultrasound en-
hances mass transport and nucleation rates during deposition 
that allow it to produce uniform metal NPs (like Ag and Pt), 
which can be incorporated into semiconductor films [109]. 

Future research should focus on developing new ma-
terials and methods for the synthesis and integration of 
NPs into semiconductor films. This includes the explo-
ration of new NPs materials, such as graphene and tran-
sition metal dichalcogenides, and the development of 
novel synthesis techniques, such as in situ synthesis and 
3D printing [105,106]. 
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4. CONCLUSION 

The shape of metal nanoparticles is a powerful parameter 
for varying their optical properties. By producing nano-
particles into specific geometries, it is possible to adapt 
their optical properties to specific tasks and applications. 
Elongated NPs and NPs with sharp edges and multiple 
faces, such as polyhedral, icosahedral and, in particular, 
pentagonal, suitable for applications where high sensitiv-
ity are required, for instance, in surface-enhanced Raman 
spectroscopy and sensing applications. 

The integration of nanoparticles into semiconductor 
films has emerged as a powerful approach to enhance the 
optical, electrical, and optoelectronic properties of these 
films. This technique has been explored for various appli-
cations, including solar cells, LEDs, and photodetectors, 
where high efficiency are required. However, to realize the 
full potential of this technology, issues such as material 
compatibility, scalability, and uniformity need to be re-
solved. 

In conclusion, it should be noted that research on na-
noparticles in semiconductor films continues to develop, 
with a focus on obtaining different morphology and im-
proving such simple producing methods as chemical syn-
thesis, which allows to obtain nanostructures suitable for 
various applications in electronics, optics and energy con-
version, and to modify their properties over a wide range. 
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Методы химического синтеза для контроля морфологии и  
получения однородных массивов металлических наночастиц в 
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Аннотация. На оптические свойства металлических наночастиц существенное влияние оказывает их морфология, и измене-
ние их формы приводит к появлению ряда интересных свойств. Наличие острых краев и вершин у наночастиц несферической 
формы, а именно формы многогранника, например, пентагональной и, в частности, икосаэдрической, приводит к лучшей 
локализации электрического поля в наночастице. Уникальные оптические и электрические свойства наночастиц и полупро-
водниковых пленок с внедренными наночастицами делают их перспективными для различных применений, включая фото-
вольтаику, оптоэлектронику и светоизлучающие устройства. Поскольку свойства нанокомпозитов на основе наночастиц 
определяются не только морфологией наночастиц, но и их распределением в объеме пленки, необходимо разработать методы 
получения наночастиц с возможностью контроля и варьирования их морфологии, а также их введения в полупроводниковые 
пленки для получения однородных массивов. В этой статье дается обзор соответствующих исследований, основное внимание 
в которых уделяется химическому синтезу, как одному из наиболее распространенных методов получения металлических 
наночастиц. 
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